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Theory for matrix elements of one-body transition operators in the quantum chaotic domain
of interacting particle systems
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Demonstrating the equivalence between the recent theory of Flambaum and collaborators which is based on
smoothed strength functions, with the much earlier formulation due to French and collaborators which is based
on embedded random matrix ensembles and smoothed transition strength densities, we derive a theory for
matrix elements of one-body transition operators in the quantum chaotic domain of isolated finite interacting
particle systems with a mean-field and a chaos generating two-body interaction (V). The role of the bivariate
correlation coefficient (z) arising out of the noncommutability ofV and the transition operator~in the theory
of Flambaumet al., z50) is tested in numerical embedded ensemble calculations with a one- plus two-body
Hamiltonian generating order-chaos transitions.

PACS number~s!: 05.45.Mt, 05.30.2d, 21.10.Pc, 24.60.Lz
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In the last few years the study of quantum chaos in i
lated finite interacting particle systems has turned from sp
tral statistics to properties of eigenfunctions and transit
strengths. For the former the classical random matrix
sembles@Gaussian orthogonal ensemble~GOE!, Gaussian
unitary ensemble~GUE!, etc.# provide the predictions. Fo
the latter, it has been recently recognized by a large num
of research groups in atomic, molecular, nuclear, and me
scopic physics@1–6# that embedded random matrix e
sembles~EEs! and in particular EGOE(k), the embedded
Gaussian orthogonal ensemble of random matrices ofk-body
interactions, are relevant.

EGOE(k) for many ~m! fermion systems is generated b
defining the HamiltonianH, which is, say,k body, to be
GOE ink-particle space and then propagating it tom-particle
spaces by using the geometry of them-particle spaces@7#.
Here one assumes that them-particle space is a direct prod
uct space, of single-particle states~say, N in number!, for
example, as in the nuclear shell model. In many situati
Hamiltonians for interacting particle systems contain
mean-field producing part~one-body parth) and a two-body
residual interactionV mixing the configurations built out o
the distribution of particles in the mean-field single-partic
states;h is defined by single-particle energiese i ,i 512N,
andV is defined by two-particle matrix elements. Then it
more realistic to use EGOE~112!, the embedded ensemb
of ~112!-body Hamiltonians defined by$H%5@h(1)#
1l$V(2)% where$V% is EGOE~2! and @h# is a fixed Hamil-
tonian or an ensemble with single-particle energies cho
random but following some distribution;@h# and $V% are in-
dependent. In the literature EGOE~112! @or the more genera
EE~112! where the matrix elements of$V% in two-particle
space may or may not be Gaussian distributed# is also called
TBRIM ~two-body random interaction model! @2#. It is to be
expected that the generic features of the EGOE~112! ap-
proach those of EGOE~2! for sufficiently large values ofl
and significant results emerge asl is varied starting from
l50; the first study with al variation @using EE~112! in-
stead of EGOE~112!#, for observables in rotating nuclei, i
due to Ȧberg @8#.
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The nature of occupancies~of single-particle states!,
strength functions, information entropy (Sin f o), inverse par-
ticipation ratio~IPR!, transition strength sums~for example,
Gamow-Teller strength sums in nuclei!, matrix elements
~transition strengths! of one-body transition operators
interaction-driven thermalization, Fock-space localizatio
etc., in the chaotic domain of interacting particle systems
being studied in several systems in an attempt to characte
quantum chaos in many particle systems@1–6,8–14#. EGOE
results forSin f o and IPR are reported in@3# and there is a
newly emerging understanding, obtained via the study of
cupancies and strength sums@4,11,14#, that in the chaotic
domain of isolated finite interacting many-particle syste
smoothed densities~they include strength functions! define
the statistical description of these systems and these den
follow from EEs. This paper deals with chaos in relation
matrix elements of one-body transition operators. In parti
lar, for systems with a mean-field and a chaos genera
two-body interactionV, the seemingly different formulation
due to French, Kota, Pandey, Tomsovic, and Majum
~FKPTM! @9,15–17# and Flambaum, Gribakina, Gribakin
Kozlov, and Ponomarev~FGGKP! @1,13,18# are analyzed, in
this paper, in order to establish a theory for matrix eleme
of one-body transition operators in the quantum chaotic
main of isolated finite interacting particle systems. In ad
tion numerical EGOE~112! calculations are presented fo
testing the theory. Let us begin with a brief discussion of
FKPTM formulation.

Given a HamiltonianH and itsm-particle eigenstatesuE&,
the transition strengths or matrix elements generated b
transition operatorO areu^Ef uOuEi&u2. As discussed in detai
in @19#, in general the state densitiesI H,m(E)5^^d(H
2E)&&m5d(m)rH,m(E) for EGOE(k) take a Gaussian (G)
form, i.e., I H,m(E)→I G

H,m(E), and similarlyrH,m(E) which
is normalized to unity. Note that^^ && denotes trace,d(m) is
the dimension of them-particle space, andI G

H,m is defined by
its centroid (e) and width (s). In addition, it is also known
@9# that the bivariate strength densities~matrix elements ofO
weighted by the state densities at the initial and fin
energies! I biv;O

H;mimf(Ei ,Ef)5^^O †d(H2Ef)Od(H2Ei)&&
mi

5^^O †O&&mirbiv;O
H;mi ,mf(Ei ,Ef) take bivariate Gaussian form

for EGOE(k), i.e., I biv;O
H;mimf(Ei ,Ef)→I biv2G;O

H;mimf (Ei ,Ef), and
3568 ©2000 The American Physical Society
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similarly rbiv;O
H;mi ,mf(Ei ,Ef) which is normalized to unity. It

should be pointed out that, for number nonconserving tr
sition operatorsO, the number of particlesmi andmf in the
initial and final states, respectively, will not be same. T
bivariate Gaussian strength densityI biv2G;O

H;mimf is defined by the
centroids (e i , e f) and widths (s i , s f) of its two marginals
and the bivariate correlation coefficientz:

z5 K KO †S H2e f

s f
DOS H2e i

s i
D L L miY ^^O †O&&mi.

From now on some or all the superscripts over the vari
densities and traces will be dropped at will when no con
sion arises. The FKPTM@9# result for transition matrix ele-
ments starts withH5h(1)1V(2) and the bivariate strengt
densityI biv;O

h (xi ,xf) due toh(1), themean-field producing
part of H. With V(2) generating chaos and thus represen
by EGOE~2!, its role is to Gaussian spread~with constant
widths! the spikes at the energiesxi and xf in I biv;O

h .
The spreadings, more importantly, are correlated; i.e.,
spreading function rbiv;O

V , in the convolution form
I biv;O

H (Ei ,Ef)5I biv;O
h

^ rbiv;O
V @Ei ,Ef # is a bivariate Gauss

ian rbiv2G;O
V (yi ,yf ;0,0,s i ,s f ,z) with z arising out of the

noncommutability ofV and the transition operatorO:

z;^O †VOV&/^O †O&^VV&.

Decomposing them-particle space into the subspacesG de-
fined by h(1) @m→(G with G labeling the eigenstates o
h(1)], I biv;O

H 5I biv;O
h

^ rbiv2G;O
V can be rewritten as

u^Ef uOuEi&u25 (
Gi ,Gf

I G
Gi~Ei !I G

Gf~Ef !

I G
mi~Ei !I G

mf~Ef !
u^Gf uOuGi&u2

3
rbiv2G;O

Gi ,Gf ~Ei ,Ef ;e i ,e f ,s i ,s f ,z!

rG
Gi~Ei !rG

Gf~Ef !
, ~1!

u^Gf uOuGi&u25@d~Gi !d~Gf !#
21 (

aPGi ,bPGf

u^GfbuOuGia&u2,

I Gr~Er !5^^d~H2Er !&&
Gr5d~Gr !r

Gr~Er !,

e r5^H&Gr, s r
25^~H2e r !

2&Gr, r 5 i , j .

In Eq. ~1!, d(Gr) are dimensions of the subspacesGr . Given
a one-body transition operatorO5(a,beabaa

†ab whereaa
†

creates a particle in the single-particle statea and ab de-
stroys a particle in stateb, it is easy to write down the
expression foru^Gf uOuGi&u2 in terms ofeab and matrix ele-
ments of number operators. References@16,17# give the de-
tails of Eq. ~1! for one-body operators withG’s chosen not
only to be eigenstates ofh(1) but also for their various
groupings. Equation~1! is applied in nuclear structure prob
lems with two-body transition operators in@9,15#, one-body
transition operators, but using the so-called unitary orb
~defined by grouping single-particle states!, in @17,20#, and
one-particle transfer operators in@21#. Although I biv;O

H

5I biv;O
h

^ rbiv2G;O
V is more general, it is Eq.~1! when ap-
-

e

s
-

d

e

s

plied to one-body transition operators that bring out the
lationship between FKPTM and FGGKP.

The FGGKP formulation starts with the transition matr
elements written in terms of matrix elements in the me
field basis statesuki& by using the expansionuEi&5Cki

Eiuki&:

u^Ef uOuEi&u25H (
ki ,kf

Cki

EiCkf

Ef^kf uOuki&J 2

5F (
ki ,kf

uCki

Eiu2uCkf

Ef u2u^kf uOuki&u2G
1F (

kiÞki8 ,kfÞkf8
Cki

EiC
k

i8

EiCkf

EfC
k

f8

Ef^kf uOuki&

3^kf8uOuki8&G5@diag#1@offdiag#. ~2!

Assuming that the transitions between different pairs
mean-field basis states are uncorrelated, the ‘‘offdiag’’ te
in Eq. ~2! is neglected. In the ‘‘diag’’ term, for a givenkf
and ki only one eab in O will contribute and @16#
u^kf uOuki&u25ueabu2^nb(12na)&Eid(Ef2@Ei2eb1ea#); ea
are energies of the single-particle statesa and Ei are the
energies^ki uHuki& of the mean-field basis statesuki&. It is
well verified by EGOE~112! calulations @2# that ^nb(1
2na)&Ei do not vary much over the basis states that cont
ute to the given initial (Ei) or final (Ef) state in the chaotic
domain. With this, Eq.~2! simplifies to

u^Ef uOuEi&u2→u^Ef uOuEi&udiag
2

5(
a,b

ueabu2^nb~12na!&Ei

3H(E i

uCE i

Ei u2uCEf5Ei2eb1ea

Ef u2J . ~3!

The uCu2’s in Eq. ~3! are nothing but the strength function
Fk(E), Fk(E)5uCk

Eu2/D(E), whereD(E) is mean spacing.
With EGOE, the strength functionsFk(E) take a Gauss-

ian form characterized by the spectral widthsk while the
standard form normally employed in many applications
the Breit-Wigner ~BW! form Gk /@2p$(E2Ek)

21Gk
2/4%#

characterized by a spreading widthGk . Usually, given
(N,m,Dspe) whereDspe is the average single-particle leve
spacing, for EGOE~112! the quantum chaotic regime is de
fined by a critical interaction strengthlc that is necessary fo
the emergence of Wigner-Dyson level spacing statistics@5#.
However, as is well demonstrated in a recent EGOE~112!
calculation@22#, when the interacting particle system is ch
otic, there is yet another border defined by the interact
strengthlFk

~calculations show thatlFk
.lc) beyond which

the strength functions make a transition from BW to Gau
ian form; see also@10,12,14#. Thus the order-chaos transitio
implies BW form to the Gaussian transition for theFk(E),
with the BW form extending beyondlc up to lFk

~earlier,
Georgeot and Shepelyansky@3# also showed that the BW
form extends to the chaotic domain!.
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FIG. 1. Transition strengths
u^Ef uOuEi&u2 vs (Ei ,Ef). ~a! Ex-
act EGOE~112! strengths,~b! Eq.
~6! with z50, ~c! Eq. ~6! with z
51/2, and ~d! Eq. ~6! with z

52/3. Here Ei5Êi5(Ei2e)/s

and Ef5Êf5(Ef2e)/s. Simi-
larly M.E. stands for the strength
u^Ef uOuEi&u2. The EGOE~112!
system and the one-body trans
tion operatorO are defined in the
text. In all the calculations the

strengths in the window, Êi

6D8/2 and Êf6D8/2, are

summed and plotted at (Êi , Êf!;
D8 is chosen to be 0.1. It should
be noted that the total strength
252. An enhancement in strength
due to the bivariate correlation co
efficient z is clearly seen in~c!
and ~d! when compared to~b!.
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With the additional assumptions that~i! strength functions
are only a function of (E2Ek)/sk wheresk is a scale param
eter (Gk for BW and sk for Gaussian! and ~ii ! the scale
parameterssk , in the chaotic domain, are constant~for ex-
ample,sk→ s̄i for the initial many-particle basis states!, the
sum overEi in Eq. ~3! can be converted into integrals involv
ing Fk(E) „note that(Ei

@ #→*@#dEi /D(E)…. The final result,
in terms of occupancies and the mean spacings, is

u^Ef uOuEi&u25(
a,b

ueabu2^nb~12na!&EiD~Ef !

3E FEi
~Ei !FEf5Ei2eb1ea

~Ef !dEi

5(
a,b

ueabu2^nb~12na!&EiD~Ef !F~D,s̄i ,s̄f !,

D5Ef2Ei1eb2ea. ~4!

Flambaumet al. @13# advocated use of Eq.~4! with BW form
for F ’s which in turn gives a BW form forF,

F~D,Ḡ i ,Ḡ f !BW5
1

2p

Ḡ i1Ḡ f

D21~ Ḡ i1Ḡ f !
2/4

, ~5!

where Ḡ i and Ḡ f are the average BW spreading widths f
the basis states over the initial and final many-particle sta
respectively. The FGGKP theory is given by Eqs.~4! and~5!
and it was subjected to EGOE~112! tests in @2# and also
using dipole (E1) transitions in a Ce atom@13,18#. It is seen
in the EGOE~112! calculations that there is always an e
hancement~some times it is even by a factor of 2! around
D50 in the matrix elements compared to the results giv
by Eqs.~4! and ~5!. In other words, the ‘‘offdiag’’ term in
Eq. ~2! in fact gives a coherent contribution. It is also se
that the enhancements grow with number of particlesm; an
estimate for the enhancements is given in@2#. Now we will
show that Eq.~1! cures these problems.
s,

n

Consider Eq.~1! by taking the subspace labelsGi andGf
to be the configurations defined by distributing the partic
in single-particle states. Forz50, therbiv2G /rGrG will be
unity and Eq.~1! will be identical to Eq.~3!. Following the
steps that led to Eq.~4!, i.e., evaluatingu^Gf uOuGi&u2 which
gives the ^nb(12na)&Ei term, replacing it by ^nb(1
2na)&Ei, assuming constant spectral widths@i.e., s r

2 in Eq.

~1! do not depend onGr , s i
2→s̄ i

2 ands f
2→s̄ f

2#, noting that
I G(E)/I m(E) are nothing butuCu2, and converting the sum
over Gi(Ei) into an integral give, directly,

u^Ef uOuEi&u25(
a,b

ueabu2^nb~12na!&EiD~Ef !

3E rbiv2G;O~Ei ,Ef ;Ei ,Ef5Ei2eb

1ea ,s̄ i ,s̄ f ,z!dEi

5(
a,b

ueabu2^nb~12na!&EiD~Ef !

3F~D5Ef2Ei1eb2ea ,s̄ i ,s̄ f ,z!biv2G ,

~6!

F~D,s̄ i ,s̄ f ,z!biv2G5
1

A2p~s̄ i
21s̄ f

222zs̄ i s̄ f !

3expS 2
D2

2~ s̄ i
21s̄ f

222zs̄ i s̄ f !
D .

With Gaussian form for the strength functions, FGGK
theory given by Eq.~4! will coincide with Eq.~6! for z50.
Thus, unlike FGGKP, FKPTM equation~6! includes corre-
lated Gaussian spreadings and, as already pointed out, in
chaotic domain~i.e., for l.lFk

) Gaussian spreadings ar
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more appropriate than BW spreadings@22#. Second, Eq.~6!
gives, for D50 and z→1, an enhancement in the matr
elements compared to the diag(z50) approximation; for
s̄ i;s̄ f , the enhancement is 1/A(12z). The so-called binary
correlation approximation@9# for EGOE givesz;122/m.
Thereforez grows withm and hence the enhancements gr
with m. Thus Eq.~6! reproduces all the peculiar results o
served in the EGOE~112! calculations in@2#.

For further confirmation that Eq.~6! is a proper theory, in
the chaotic domain defined byl.lFk

, for matrix elements
of one-body transition operators, numerical calculations
carried out for variousl values using a 25-membe
EGOE~112! ensemble $H%5h(1)1l$V(2)% in 924-
dimensionalN512, m56 space;h(1) is defined by the
single-particle energiese i5( i )1(1/i ), i 51,2, . . . ,12just as
in @2#. The one-body transition operator employed in the c
culations isO5a2

†a9. Results forl50.3 are shown in Fig. 1
For the present EGOE~112! system,lFk

50.2 @22#. Thus,

for l50.1 the strength functions are close to BW form a
comparing the EGOE~112! numerical results, for matrix el
ements of the one-body operator, with Eqs.~4! and ~5! the
disagreement between the two is found to be quite simila
.
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.

t
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to

the comparision between Figs. 1~a! and 1~b!; i.e., it is essen-
tial to construct a theory with correlated BW forms. Forl
50.3, the strength functions are close to Gaussian and
bivariate Gaussian form is a good approximation for stren
densities. Therefore for this case Eq.~6! applies as shown in
Fig. 1. The comparisons in Fig. 1 clearly emphasize the r
of the bivariate correlation coefficientz and withoutz it is
not possible to get a meaningful description of the transit
matrix elements. Numerical calculations givez51/2 and
shown in the figure is also the plot forz52/3 as given by the
binary correlation approximation. Here the agreement
tween theory and calculations is even better. This is enco
aging as in practice it is often difficult@9,15,17# to calculate
the exact values ofz.

In summary, analyzing FKPTM and FGGKP formula
tions, a theory~6! for the matrix elements of one-body tran
sition operators in the chaotic domain~with l.lFk

) of iso-

lated finite interacting particle systems is derived and tes
Further investigations of Eq.~6! in real systems are highly
desirable.
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